PAN-PLANETS

Searching for Hot Jupiters around Cool Stars

Christian Obermeier Johannes Koppenhöfer, Thomas Henning, Roberto Saglia

EXOPLANET THEORY

PROJECT PROPERTIES

MONTE-CARLO TRANSIT INJECTIONS

CANDIDATES

EXOPLANET THEORY

PROJECT PROPERTIES

MONTE-CARLO TRANSIT INJECTIONS

CANDIDATES

Exoplanets - the hot new field

Exoplanets - the hot new field

Sizes of Kepler Planet Candidates

Totals as of January 6, 2015

Exoplanets - the hot new field

Sizes of Kepler Planet Candidates

Totals as of January 6, 2015

How does transiting work?

CONCEPT

Why have a small project?

Best candidates for transit spectroscopy

Planetary formation model unclear

EXOPLANET THEORY

PROJECT PROPERTIES

MONTE-CARLO TRANSIT INJECTIONS

CANDIDATES

OVERVIEW

Pan-STARRS1

Pan-Planets

Pan-Planets

- Survey for transiting planets around cool main-sequence stars - special interest for M dwarfs
- Observing time: June 2009 October 2012 (180h)
- Data in i-band
- 7 slightly overlapping fields 42 sq. deg FOV
- 4 million stars with more than a thousand of data points
- ~ 50.000 M dwarf targets in the FOV

ESA

Quality could be better....

Our goal

- Reliable selection of M dwarfs
- Remove red, distant giant stars
- Cope with varying amounts of extinction in the FOV

How we do it?

- SED fitting of PS1 griz+JHK (2MASS) magnitudes
- Using 6 different synthetic SED models
- Extinction fit \rightarrow dustmap from Schlegel et al., 1998
- Proper motion cuts
- Does it work?
- Yes! About 50.000 selected targets

M dwarf selection

Good host star characterization possible

EXOPLANET THEORY

PROJECT PROPERTIES

MONTE-CARLO TRANSIT INJECTIONS

CANDIDATES

MONTE-CARLO SIMULATIONS

Quick How-To

Our method - transit injections

MONTE-CARLO SIMULATIONS

Results for M dwarfs

 Complete set of transit injections for all 50000 M dwarfs with 200 repetitions

Results

- Detection efficiency of over 60% for 1d < p < 3d
- Lower efficiency of 15% for 3d < p < 10d
- Null result would mean: new upper limit of ~0.4%

Results for other main-sequence stars

- Efficiency of 15% 10% for 1d < p < 3d
- We expect to find one Hot Jupiter per field

MONTE-CARLO SIMULATIONS M dwarf sensitivity

MONTE-CARLO SIMULATIONS New fraction limits

MONTE-CARLO SIMULATIONS

Real sample

Confirmed brown dwarf + M dwarf system

MONTE-CARLO SIMULATIONS Simulated sample

Simulated Hot Jupiter around an M dwarf

How does transiting work?

EXOPLANET THEORY

PROJECT PROPERTIES

MONTE-CARLO TRANSIT INJECTIONS

CANDIDATES

What we start with:

- Stars characterized with SED fitting + proper motion
- V-fitting algorithm used for period detection

More precise refitting with MCMC:

- Priors from SED fitting (radius, limb darkening)
- Priors from BLS fitting (transit duration, depth, period, t0)
- Determine best-fitting properties+errors

What we have:

- ~10 M dwarf Hot Jupiter candidates
- ~15 K, G, F dwarf Hot Jupiter candidates
- ~200 M dwarf eclipsing binaries
- ~15 white dwarf variable objects

M dwarf Hot Jupiter candidate

M dwarf Hot Jupiter candidate

K dwarf Hot Jupiter candidate

Curious variable object

Transit-like event in a variable 14th mag system

CANDIDATES Possible white dwarf planetary transit

CANDIDATES Possible white dwarf planetary transit

How will we follow up candidates?

- 10 nights at McDonald observatory (Texas)
 - Reconnaissance LRS, possible RV measurement
- ~14 nights at SpeX, IRTF (Hawaii)
 - → Dedicated LRS/MRS for eclipsing M dwarf binaries
- ~20 nights at Wendelstein (Bavaria)
 - --> Confirm periods
 - → Rule out false detections (red noise residuals)
 - → Improve transit shape estimate
 - Record different bands

Conclusion

- 10 nights at McDonald observatory (Texas)
 - Pan-Planets is capable of detecting Hot Jupiters
 - We will more accurately assess the occurrence rate
 - We received time to follow up all candidates
 - Next months: finish follow-up phase
 - Publish! transit shape estimate

Record different bands